Extended Survival of 9- and 10-Gene Edited Pig Heart Xenografts with Ischemia Minimization and CD154 Costimulation Blockade–Based Immunosuppression

I. Ileka¹, R. Chaban¹, K. Kinoshita¹, G. McGrath¹, Z. Habibabady¹, A. Calhoun¹, A. Maenaka¹, M. Ma¹, V. Diaz¹, M. Dufault¹, L. Burdorf², W. Eyestone², K. Whitworth³, D.K.C. Cooper¹ R.N. Pierson III¹

¹Center for Transplantation Sciences, Massachusetts General Hospital and Harvard Medical School, Boston, MA
²Revivicor, Inc., Blacksburg, VA
³National Swine Resource and Research Center (NSRRC), Columbia, MO
Relevant Disclosures

- R. Chaban was supported by the Benjamin Research Fellowship from the German Research Foundation (DFG)
- I. Ileka is supported by T32 5T32 AI007529-24
- Gene edited pigs were provided by Revivicor and NSRRC (NIH grant U42OD011140)
- Tonix Pharmaceuticals provided TNX-1500*, a humanized, Fc-modified, dimeric anti-CD154 mAb
- This work was supported by NIH grants U01 AI153612 (Pierson), U19 AI090959 (Cooper), and sponsored research agreements with Tonix Pharmaceuticals

* TNX-1500 is an investigational new biologics and is not approved for any indication
Background

• Gene-edited (GE) pigs for Xenotransplantation.
 – Remove CHO antigen targets of preformed Ab
 • TKO (Gal-1,3-\(\alpha\)Gal, Neu5Gc, \(\beta\)4Gal)
 – Add human regulatory molecules
 • Complement: CD46, CD55, CD59
 • Coagulation: TBM, EPCR, TFPI
 – Add human anti-inflammatory ‘transgenes’
 • CD47, HLA-E/\(\beta\)2\(\mu\)g, HO-1, A20, CD39
Background

- We evaluated hearts from multi-GE pigs in baboon transplants treated with a novel costimulation-based immunosuppressive regimen and cold-perfused ‘ischemia minimization’.
Methods

- Current study:
 - 3-, 9-, or 10-GE pig hearts
 - novel costimulation-based immunosuppressive regimen
 - cold-perfused storage technique designed to minimize graft ischemia.

- Eight baboons recipients received heterotopic heart transplants using Steen’s cold-perfusion ischemia minimization
 - 3 Reference pig hearts (Ntl. Swine Resource & Research Ctr: NSRRC)
 - 3-GE pigs (n=3): GTKO.β4GALNT2KO.hCD55
 - 5 Multi-GE pig hearts (Revivicor)
 - 9-GE pigs (n=3): GalKO.β4GalNT2KO.GHRKO.hCD46.hCD55.hTBM.hEPCR.hCD47.hHO-1
 - 10-GE pigs (n=2): GalKO.β4GalNT2KO.GHRKO.CD46.CD55.hTBM.hEPCR.hCD47.hHO-1.CMAHKO
Methods: Heterotopic Heart Transplantation

- Standard UW cold perfusate.
- Ischemia minimization: Steen method
 - battery-powered portable perfusion circuit
 - 4°C Steen Solution
 - Protocol 2-hr perfusion
- Heterotopic abdominal xenograft transplant
Methods: Steen Ischemia Minimization

- Steen: buffered extracellular solution (laboratory-made)
- 240ml of washed human RBCs; 760 ml Steen solution
- Aortic perfusion at 4°C, 40-50 mmHg, immersed in reservoir; LV vent
Methods: Recipient Immunosuppressive Treatment Regimen

- **Induction Therapy**
 - Antithymocyte Globulin (ATG)
 - αCD20
- **Day of Surgery Therapy**
 - Thromboxane inhibitor (BIA)
 - TNF Inhibitor (Etanercept)
 - Interleukin 6 inhibitor receptor blocker (Tocilizumab)
- **Maintenance Therapy**
 - αCD154 (TNX-1500), Mycophenolate Mofetil (MMF), Corticosteroids
 - Interleukin 6 inhibitor receptor blocker (Tocilizumab)
Results: Xenograft survival

- 3-GE grafts functioned well initially.
 - POD 0: Refractory ventricular fibrillation. No AMR
 - POD 3: Graft necrosis, rupture: AMR
 - POD 5: Graft necrosis, rupture: AMR

- 9-GE
 - POD 0: Refractory Ventricular fibrillation
 - POD 13: AMR (strongly positive preop crossmatch)
 - POD 393: Preserved function, normal myocardium (protocol biopsies): slowly progressive graft hypertrophy

- 10-GE
 - POD 113: Combined CMR, AMR; progressive hypertrophy
 - POD 243: Preserved function, normal myocardium (protocol biopsies); slowly progressive hypertrophy
<table>
<thead>
<tr>
<th>Animal ID</th>
<th>GE</th>
<th>Anticoagulation</th>
<th>Major complication</th>
<th>Graft Survival (Days)</th>
<th>Final Biopsy</th>
</tr>
</thead>
<tbody>
<tr>
<td>B3022</td>
<td>3G</td>
<td>Heparin IV</td>
<td>Graft rupture</td>
<td>3</td>
<td>Antibody mediated rejection</td>
</tr>
<tr>
<td>B2922</td>
<td>3G</td>
<td>Heparin IV</td>
<td>Graft rupture</td>
<td>5</td>
<td>Antibody mediated rejection</td>
</tr>
<tr>
<td>B8522</td>
<td>3G</td>
<td>Heparin IV</td>
<td>Refractory Ventricular fibrillation</td>
<td>0</td>
<td>No evidence of rejection</td>
</tr>
<tr>
<td>B7421</td>
<td>9G</td>
<td>No</td>
<td>Refractory Ventricular fibrillation</td>
<td>0</td>
<td>Antibody mediated rejection</td>
</tr>
<tr>
<td>B2721</td>
<td>9G</td>
<td>Heparin IV for 10 days</td>
<td>None</td>
<td>393</td>
<td>No evidence of rejection</td>
</tr>
<tr>
<td>B6921</td>
<td>9G</td>
<td>Heparin IV for 10 days</td>
<td>None</td>
<td>13</td>
<td>Antibody mediated rejection</td>
</tr>
<tr>
<td>B7221</td>
<td>10G</td>
<td>Heparin IV for 8 days, then heparin sc for 2 weeks, ASA po daily</td>
<td>None</td>
<td>113</td>
<td>Antibody mediated rejection (Grade 3), Acute cellular rejection (3R)</td>
</tr>
<tr>
<td>B2622</td>
<td>10G</td>
<td>Heparin IV for 8 days, then heparin sc continue, ASA po daily</td>
<td>None</td>
<td>243</td>
<td>No evidence of rejection</td>
</tr>
</tbody>
</table>
Results: Graft Survival, Function, and Morphology

A) Graft Contractility and Survival

B) Interventricular Septum (IVS)

[Graphs showing time in weeks on the x-axis and function score or IVS thickness in mm on the y-axis, with different lines representing different grafts (e.g., B7421, B6921, B2721, B7221, B2622, B3022, B2922, B8522).]
Results: CRP, IL-6

*Dashed lined is the upper limit of the CRP assay

CRP

IL-6

*Dashed lined is the upper limit of the CRP assay
Results: Clinical condition, cardiac injury

Animal weight

Time in weeks

Troponin I level

Time in weeks
Results: Histology

A B2721 (9GE) D#50
B B2721 (9GE) D#50
C B2721 (9GE) D#275
D B2721 (9GE) D#275
B7221 (10GE) D#50
B7221 (10GE) D#50
Results: Histology
Conclusions

• Relative to reference genetics without thrombo-regulatory and anti-inflammatory gene expression, 9- or 10-GE pig hearts exhibit promising performance in the context of a clinically applicable regimen including ischemia minimization and αCD154-based immunosuppression.

• Despite GE modifications and use of ischemia minimization, peri-transplant myocardial injury (Troponin leak) and systemic inflammation (CRP, IL-6 elaboration) occur consistently, but do not prevent graft recovery and long-term survival.

• These encouraging results justify further evaluation in an orthotopic heart xenotransplant model.
Thank you!

Key Contributors:
R Chaban
A Calhoun
V Diaz
I Ileka
RN Pierson III