PHARMACEUTICALS

NASDAQ: TNXP

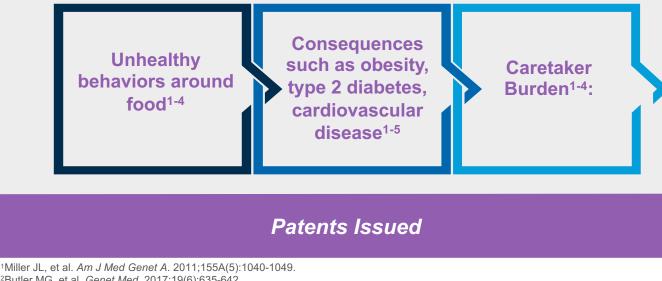
TNX-2900 Prader-Willi Syndrome HERBERT HARRIS, MD, PHD

RARE DISEASE INNOVATION AND PARTNERSHIP SUMMIT MARCH 23, 2023 PHILADELPHIA, PA

Cautionary Note on Forward-Looking Statements

Certain statements in this presentation regarding strategic plans, expectations and objectives for future operations or results are "forward-looking statements" as defined by the Private Securities Litigation Reform Act of 1995. These statements may be identified by the use of forward-looking words such as "anticipate," "believe," "forecast," "estimate" and "intend," among others. These forward-looking statements are based on Tonix's current expectations and actual results could differ materially. There are a number of factors that could cause actual events to differ materially from those indicated by such forward-looking statements. These factors include, but are not limited to, the risks related to failure to obtain FDA clearances or approvals and noncompliance with FDA regulations; delays and uncertainties caused by the global COVID-19 pandemic; risks related to the timing and progress of clinical development of our product candidates; our need for additional financing; uncertainties of patent protection and litigation; uncertainties of government or third party payor reimbursement; limited research and development efforts and dependence upon third parties; and substantial competition. As with any pharmaceutical under development, there are significant risks in the development, regulatory approval and commercialization of new products. The forward-looking statements in this presentation are made as of the date of this presentation, even if subsequently made available by Tonix on its website or otherwise. Tonix does not undertake an obligation to update or revise any forward-looking statement, except as required by law. Investors should read the risk factors set forth in the Annual Report on Form 10-K for the year ended December 31, 2022, as filed with the Securities and Exchange Commission (the "SEC") on March 13, 2023, and periodic reports and current reports filed with the SEC on or after the date thereof. All of Tonix's forward-looking statements are expressly qualified by all such risk factors and other cautionary statements.

TNX-2900*: Hyperphagia in Prader-Willi Syndrome Intranasal Potentiated Oxytocin (OT) with Magnesium


PROFILE

Prader-Willi Syndrome is the most common genetic cause of life-threatening childhood obesity

• Rare disease occurring in 1 in 10,000 to 1 in 30,000 births

Differentiator: No approved therapeutic currently on the market for hyperphagia in PWS

Dangers of PWS Hyperphagia:

DEVELOPMENT PROGRAM

Market Entry: Hyperphagia in Prader-Willi Syndrome

Additional Indications: Rare Hyperphagia Conditions

Status: Phase 2 ready

Next Steps: IND submission

*TNX-2900 is in the pre-IND stage of development and has not been approved for any indication.

²Butler MG, et al. Genet Med. 2017;19(6):635-642.

³Butler MG. NORD. Updated 2018. Accessed May 25, 2022. https://rarediseases.org/rare-diseases/prader-willi-syndrome/

⁴Prader-Willi Syndrome Association USA. Accessed May 25, 2022. https://www.pwsausa.org/what-is-prader-willi-syndrome/ ⁵Muscogiuri G, et al. J Endocrinol Invest. 2021;44(10):2057-2070.

© 2023 Tonix Pharmaceuticals Holding Corp.

TNX-2900*: Prader-Willi Syndrome Intranasal Potentiated Oxytocin (OT) with Magnesium

PROFILE

Prader-Willi Syndrome is the most common genetic cause of life-threatening childhood obesity

Rare disease occurring in 1 in 10,000 to 1 in 30,000 births

Symptoms include lack of suckling as infants, poor muscle strength, and constant hunger (hyperphagia) in adolescents and young adults

- In animal models, OT has improved suckling and suppressed hunger
 - Tonix's patented potentiated OT formulation is believed to increase activity of OT at OT receptors (OXTR)

Patents Issued

DEVELOPMENT PROGRAM

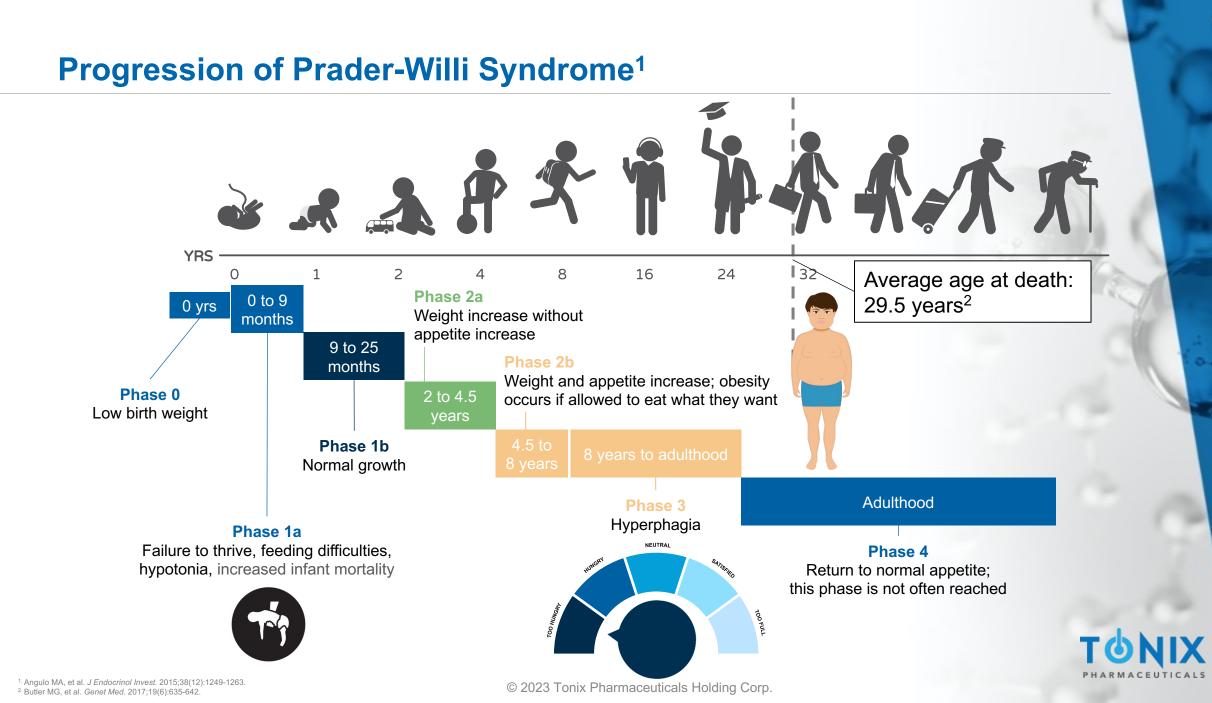
Market Entry: Hyperphagia in Prader-Willi Syndrome

Additional Indications: Rare Hyperphagia Conditions

Status: Phase 2 ready

Next Steps: IND submission

*TNX-2900 is in the pre-IND stage of development and has not been approved for any indication.


Prader-Willi Syndrome (PWS)

Cause	~65% of cases are due to a new deletion on paternal chromosome 15; first genetic imprinting disorder recognized in humans
Prevalence	1 in 10,000 to 1 in 30,000 ^{1,2} ; most common syndromic cause of obesity
Symptoms	In infants, severe hypotonia and difficulty sucking. In children and adolescents, delayed global development, decreased growth resulting in short stature, intellectual difficulties, hypogonadism, hyperphagia, life-threatening obesity, behavioral problems
Diagnosis	Genetic testing: DNA methylation
Treatment	No cure, but human growth hormone treatment is FDA approved for growth failure in PWS children

 ¹Angulo MA, et al. J Endocrinol Invest. 2015;38(12):1249-1263.
²McCandless, Shawn E et al. SUN-604 U.S. Prevalence & Mortality of Prader-Willi Syndrome: A Population-Based Study of Medical Claims, Journal of the Endocrine Society, Volume 4, Issue Supplement_1, April-May 2020, SUN–604, https://doi.org/10.1210/jendso/bvaa046.993

© 2023 Tonix Pharmaceuticals Holding Corp.

Dangers of PWS Hyperphagia

Behaviors around food¹⁻⁴:

- Foraging or hoarding
- Temper tantrums and meltdowns
- Binge eating
- Stealing or stealing money to buy food
- Eating garbage/spoiled food
- Obsessions and compulsions

Consequences¹⁻⁵:

- Life-threatening obesity
- Risk of choking or gastrointestinal perforation
- Food-borne illness
- Chronic constipation
- Swallowing difficulties
- Decreased ability to vomit
- Type 2 diabetes
- Cardiovascular disease

Caretaker Burden¹⁻⁴:

- 24/7 supervision
- Restricted food intake
- Low-calorie diet
- Locking cabinets and refrigerators

There is no treatment for PWS-related hyperphagia⁴

¹ Miller JL, et al. Am J Med Genet A. 2011;155A(5):1040-1049.

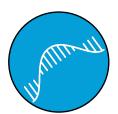
^{2.} Butler MG, et al. *Genet Med.* 2017;19(6):635-642.

- ³ Butler MG. NORD. Updated 2018. Accessed May 25, 2022. https://rarediseases.org/rare-diseases/prader-willi-syndrome/
- ⁴ Prader-Willi Syndrome Association USA. Accessed May 25, 2022. https://www.pwsausa.org/what-is-prader-willi-syndrome/

^{5.} Muscogiuri G, et al. J Endocrinol Invest. 2021;44(10):2057-2070.

RARE

DISEASE


PORTFOLIC

Abnormalities of the Oxytocin System in Patients with PWS

PWS patients have

Increased oxytocin in blood plasma^{1,2}

Decreased oxytocin mRNA¹

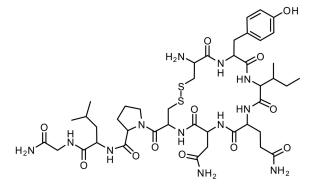
Low levels of oxytocin receptor expression²

Decreased or abnormal oxytocin neurons (especially in the PVN)¹

PVN=paraventricular nucleus. ¹ Correa-da-Silva F, et al. *J Neuroendocrinol*. 2021;33(7):e12994 ² Jurek B, et al. *Physiol Rev*. 2018;98(3):1805-1908.

History of Oxytocin Use

Synthetic oxytocin has been used to induce labor for over 65 years¹


Due to the role of endogenous oxytocin in pain regulation and social behavior, the administration of exogenous oxytocin has been studied in a wide variety of therapeutic areas²

Intravenous application of oxytocin has been met with many challenges:

- Short half-life:
 - Intravenous oxytocin has a half-life of roughly 3 minutes³
- Difficulty crossing the blood-brain barrier⁴

Functions of Natural and Therapeutic Oxytocin

Childbirth¹⁻³:

<u>Natural</u>

 Stimulates uterine contractions during childbirth

Therapeutic

 Widely used for the induction of labor in an estimated 25% of women in Western countries

Breastfeeding^{1,4,5}**:** Natural

- Oxytocin is responsible for the let-down reflex
- Contracts the muscles around the glands that produce milk

Therapeutic

 Approved to stimulate milk production, but discontinued in the US

Behavioral regulation^{1,6}: Natural

- Oxytocin plays a role in prosocial behaviors and bonding
- Signals satiety and suppresses appetite

Therapeutic

No approved oxytocin therapy

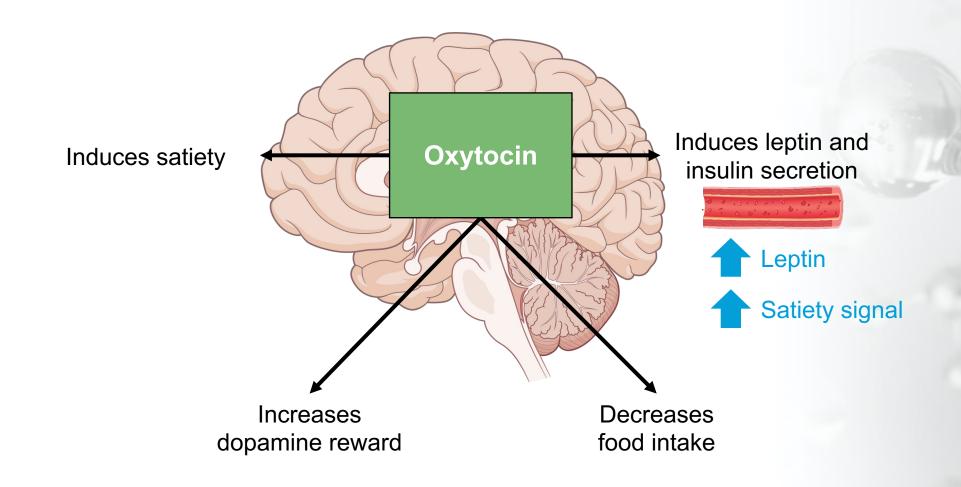
¹ McCormack SE, et al. *Endocr Rev.* 2020;41(2):121-145.

⁴ World Health Organization. World Health Organization; 2009. https://www.ncbi.nlm.nih.gov/books/NBK148970/

MPR. December 12, 2013. Accessed June 23, 2022. https://www.empr.com/home/news/retrophin-to-reintroduce-syntocinon-nasal-spray.
Bartz JA, et al. Trends Cogn Sci. 2011;15(7):301-309.

RARE

DISEASE


PORTFOLIC

² Kuwabara Y, et al. Arch Gynecol Obstet. 1987;241(1):13-23.

³ Boie S, et al. Cochrane Database Syst Rev. 2018;8(8):CD012274.

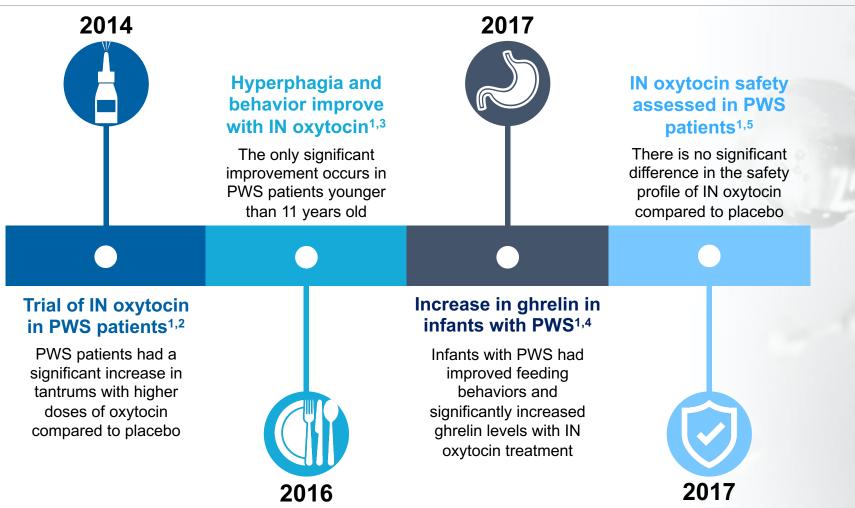
¹⁰

Oxytocin Plays Major Role in Satiety¹⁻³

ARMACEUTICALS

Intranasal Use of Oxytocin

- Intranasal oxytocin was introduced as a lactation aid in the early 1960s¹
- Numerous studies have investigated chronic and acute intranasal oxytocin for the treatment of neuropsychiatric disorders and pain²
 - Intranasal oxytocin has been studied in anxiety disorders,³ autism,⁴ PTSD,⁵ schizophrenia,⁶ and pain⁷
- Chronically administered intranasal oxytocin is generally very well tolerated⁸⁻¹¹
- Intranasal oxytocin has been found to be generally safe and well tolerated in a variety of healthy populations ranging from infancy to old age^{12,13}


Skarsten KW. Tidsskr Nor Laegeforen. 1962;82:8-10.
Quintana DS, et al. Mol Psychiatry. 2021;26(1):80-91.
Jones C, et al. Dialogues Clin Neurosci. 2017;19(2):193-201
Guastella AJ, et al. Biol Psychiatry. 2010;67(7):692-694.
Pitman RK, et al. Psychiatry. Res. 1993;48(2):107-117.
Feifel D, et al. Biol Psychiatry. 2016;79(3):222-233.
Tboll S, et al. Neuroscience. 2018;387:149-161.
Rung, JM, et al. Psychopharmacology (Berl). 2021;1-14.

^e Horta M, et al. Neurosci Biobehav Rev. 2020;108:1-23.
^{10.}Finger E, et al. Neurology. 2015;84(2):174-181.
^{11.}Barraza JA, et al. Exp Clin Psychopharmacol. 2013;21(2):85-92.
^{12.}DeMayo MM, et al. Drugs. 2017;19(5):391-410.
^{13.}Verhees MWFT, et al. Psychopharmacology (Berl). 2018;235(8):2471-2477.

© 2023 Tonix Pharmaceuticals Holding Corp.

Intranasal (IN) Oxytocin As PWS Treatment

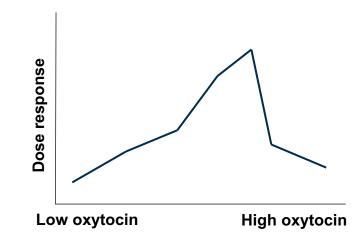
Despite strong evidence for the role of OT in satiety, there are challenges in using OT for the treatment of PWS

^{1.} McCormack SE, et al. Endocr Rev. 2020;41(2):121-145

SL, et al. Am J Med Genet A. 2014;164A(9):2232-2239. 4. Tauber M, et al. Pediatrics. 2017;139(2):e20162976 ^{3.} Kuppens RJ, et al. Clin Endocrinol (Oxf). 2016;85(6):979-987. ^{5.} Miller JL, et al. Am J Med Genet A. 2017;173(5):1243-1250.

© 2023 Tonix Pharmaceuticals Holding Corp.

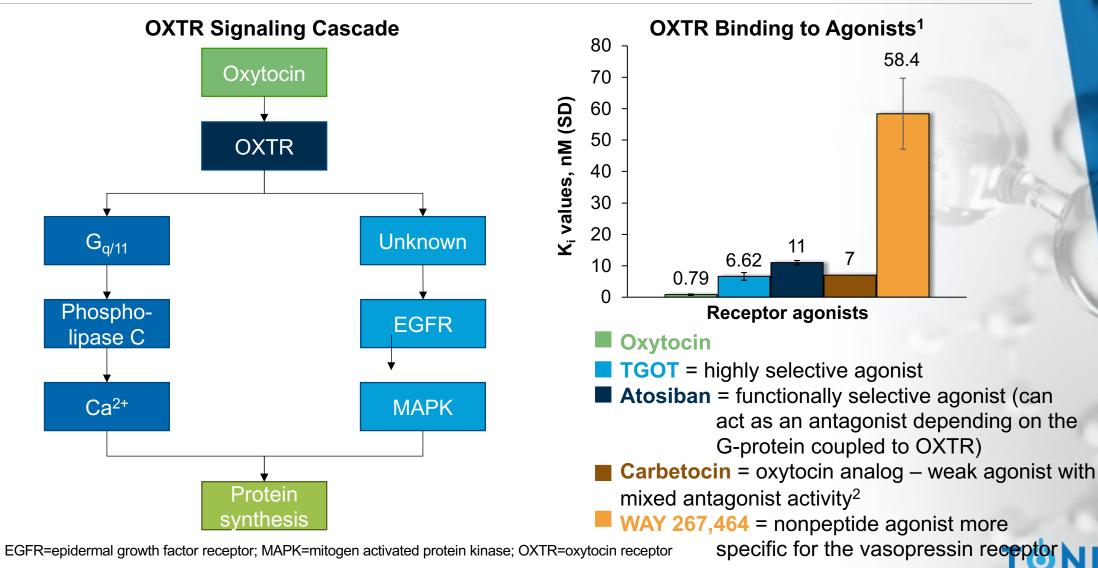
Challenges in Intranasal Oxytocin Studies in PWS


- No significant difference with IN oxytocin treatment but significantly increased tantrums at higher doses in humans⁴
- Significant improvement in hyperphagia but only in patients younger than 11 years old⁵

¹ Quintana DS, et al. Mol Psychiatry. 2021;26(1):80-91

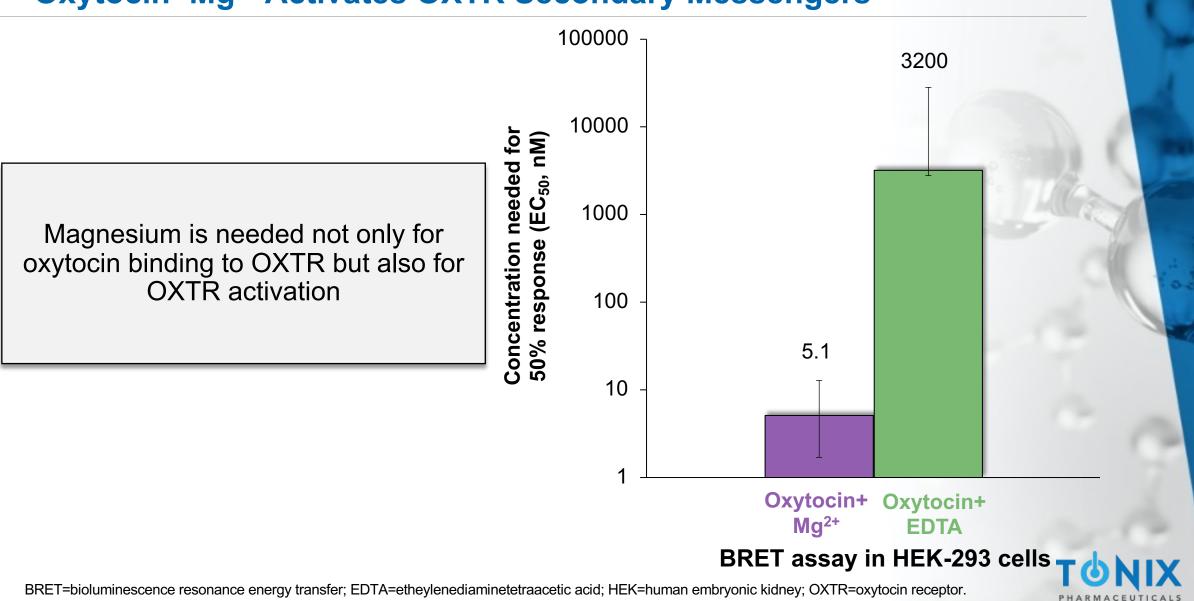
² Bharadwaj VN, et al. *Pharmaceutics*. 2022;14(5):1105.
³ Meyerowitz JG, et al. *Nat Struct Mol Biol*. 2022;29(3):274-281.
⁴ Einfeld SL, et al. *Am J Med Genet A*. 2014;164A(9):2232-2239
⁵ Kuppens RJ, et al. *Clin Endocrinol* (*Oxfl*. 2016;85(6):979-987.

- Central oxytocin levels are difficult to measure¹
- Dose response in animals is not linear but an inverted-U shape^{1,2}



- Recent reports in animals show that magnesium is needed for full oxytocin receptor binding^{2,3}
- Magnesium enables a full dose response^{2,3}

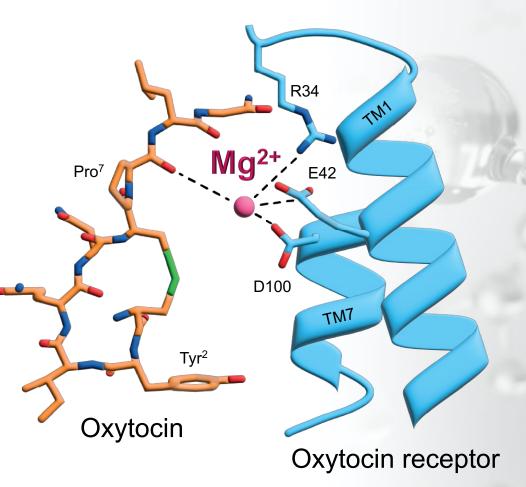
© 2023 Tonix Pharmaceuticals Holding Corp.


Oxytocin Receptor (OXTR)

DISEASE PORTFOLIO

RARE

Oxytocin+Mg²⁺ Activates OXTR Secondary Messengers


© 2023 Tonix Pharmaceuticals Holding Corp.

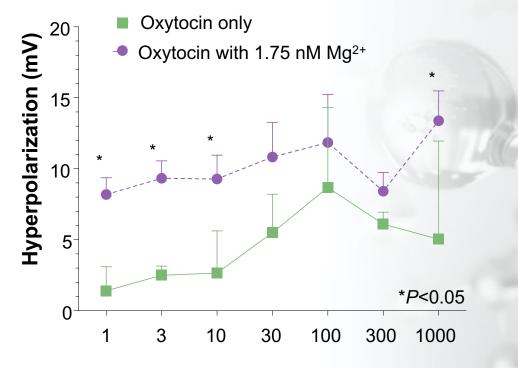
16

RARE DISEASE PORTFOLIO

Oxytocin Requires Magnesium for Receptor Binding

- OXTR exists in 2 conformational states¹:
 - Low affinity
 - High affinity
- Magnesium ions are necessary for the high-affinity state^{1,2}
- Without magnesium ions present, oxytocin cannot achieve full binding to OXTR²

17


OXTR=oxytocin receptor.

^{1.} Jurek B, et al. *Physiol Rev.* 2018;98(3):1805-1908.
^{2.} Meyerowitz JG, et al. *Nat Struct Mol Biol.* 2022;29(3):274-281.

Addition of Mg²⁺ Expands the *in vivo* Useful Dose Range of Intranasal Oxytocin in Animals

- A nonlinear dose response has been demonstrated in the use of intranasal oxytocin
- This decreases efficacy at higher doses
- Addition of Mg²⁺ rescues the efficacy of oxytocin at high doses

Oxytocin dose (nM)

In vitro whole-cell voltage-clamp recordings of rat trigeminal nerves exposed to oxytocin solution with and without additional magnesium ions

RARE DISEASE PORTFOLIO

Highlights

- Hyperphagia in Prader-Willi syndrome (PWS) is severe and life-threatening
 - There is currently no treatment for hyperphagia in adolescents and young adults with PWS
- Oxytocin is one of the hormones responsible for signaling satiety
- The oxytocin receptor requires magnesium ions for the high-affinity conformation for signaling satiety
- TNX-2900* combines oxytocin with magnesium for improved receptor binding and potentially improved therapeutic action
- TNX-2900 is in development to treat hyperphagia in adolescents and young adults with PWS

*TNX-2900 is an investigational drug in the pre-IND stage of development and has not been approved for any indication

THANK YOU