



Bedtime Sublingual Transmucosal Cyclobenzaprine (TNX-102 SL) for the Treatment of Military-Related PTSD:

Retrospective Analyses of the Mediators and Moderators of Treatment Response

Presented by

Gregory Sullivan, MD

at

American Society of Clinical Psychopharmacology

Annual Meeting, Miami, FL May 30, 2017



## What is Military-Related PTSD and Why Study It?

- ➤ Proposed indication for TNX-102 SL\* is for the treatment of posttraumatic stress disorder (PTSD):
  - ➤ Affects 8.6 million U.S. adults¹
- ➤ Definition of military-related PTSD:
  - ➤ Any PTSD that has developed in response to any DSM-5 PTSD Criterion A-qualifying trauma(s) that occurred during military service includes combat and non-combat traumas
- ➤ Why target military-related PTSD?
  - ➤ No treatment response observed in U.S. military population with the two FDA-approved selective serotonin reuptake inhibitors (SSRIs) for PTSD<sup>2,3,4</sup>
  - ➤ No other type of pharmacological treatment had been shown to be effective in any large multicenter clinical trial in a U.S. military population

<sup>\*</sup>TNX-102 SL (cyclobenzaprine HCl sublingual tablets) is an investigational new drug and is not approved for any indication.

¹Kessler et al., *Arch Gen Psych* 2005; Prevalence rate of 3.5% applied to U.S. Census estimate of 247M U.S. adult (≥18) population in 2015; ² Friedman MJ et al. J Clin Psychiatry 2007;68:711-20. ³ Zoloft® Package Insert, Pfizer, NY, NY; August 2014. ⁴ Paxil® Package Insert, Glaxo, June 2014; (www.census.gov/quickfacts/table/PST045215/00);



### What is TNX-102 SL?

- TNX-102 SL is a patented¹ sublingual eutectic formulation of cyclobenzaprine (CBP) for transmucosal absorption
  - Tricyclic molecule with high affinity for target receptors considered to play key roles in sleep physiology and nocturnal emotional memory processing
  - > Functional studies show antagonism at each of<sup>2</sup>
    - > 5-HT<sub>2A</sub>
    - $\triangleright \alpha_1$ -adrenergic
    - ➤ Histamine-H<sub>1</sub>
  - No recognized risk of addiction
- TNX-102 SL is designed for bedtime administration with desirable nighttime pharmacokinetic profile and pharmacodynamics effects
  - > Rapid systemic exposure and increased bioavailability during sleep period
  - > Avoids first-pass metabolism reducing exposure to long-lived active metabolite, norcyclobenzaprine (nCBP)
    - $> t_{1/2} \sim 72 \text{ hours}$
    - ➤ Less selective for target receptors -> undesirable off-target functional activities
    - ➤ Exposure (AUC<sub>0-48</sub>) for CBP/nCBP of 1.9 for TNX-102 SL vs. 1.2 for oral IR tablet<sup>2</sup>
- TNX-102 SL has been designated a Breakthrough Therapy for PTSD by the U.S. Food and Drug Administration (FDA)

<sup>&</sup>lt;sup>1</sup> Notice of Allowance for Eutectic Proprietary Protectic<sup>™</sup> Formulation Patent issued by the U.S. Patent and Trademark Office; <sup>2</sup> Daugherty et al. Society of Biological Psychiatry 70<sup>th</sup> Annual Scientific Convention, May 14-16, 2015 Toronto, Ontario, Canada. <sup>3</sup> Lederman et al. European Congress of Rheumatology, Rome, June 2015; IR, immediate-release



### Rationale for Targeting of Sleep for Treatment of PTSD

### > PTSD is a disorder of recovery

- ➤ Most people exposed to an extreme trauma recover in a few weeks
- ➤ New learning, e.g. extinction, and memory processing are essential to recovery
- ➤ In PTSD, memory processing, e.g. extinction consolidation, 1,2 may be impeded due to insufficient sleep quality

### ➤ TNX-102 SL targets sleep quality

➤ Potent binding and antagonism at receptors that regulate sleep quality<sup>3</sup>, e.g.  $5\text{-HT}_{2A}$ ,  $\alpha_1$ -adrenergic, and histamine  $H_1$  receptors, during the sleep period is hypothesized to be permissive to sleep quality-dependent recovery processes from trauma and PTSD

<sup>&</sup>lt;sup>1</sup> Pace-Schott et al. Biol Mood Anxiety Disord 2015;5:3. <sup>2</sup> Menz et al. J Neurosci 2016;36(7):2148. <sup>3</sup> Daugherty et al., Abstract 728, Society of Biological Psychiatry 70th Annual Scientific Convention, May 14-16, 2015, Toronto Ontario, Canada



## Phase 2 AtEase Study in Military-Related PTSD

Placebo at bedtime once-daily

N= 92

TNX-102 SL at bedtime once-daily

2.8 mg

N= 90

TNX-102 SL at bedtime once-daily

5.6 mg (2 x 2.8 mg)

N = 49

- Efficacy analysis from 231 patients; 24 U.S. clinical sites
- Enrolled patients with baseline CAPS-5 score ≥ 29

Randomized, double-blind, placebo-

controlled trial in military-related PTSD

Primary Efficacy Analysis:

- Difference in CAPS-5 score change from baseline between TNX-102 SL 2.8 mg and placebo at week 12
- Key Secondary Measures:
  - PROMIS Sleep Disturbance, CGI-I, SDS



CAPS-5, Clinician-Administered PTSD Scale for DSM-5



# **AtEase Study Results:**Primary and Sensitivity Analyses of CAPS-5 Change from Baseline

- ➤ TNX-102 SL 2.8 mg dose (N=90) had a greater CAPS-5 change from baseline at Week 2 (MMRM, p=0.040) and Week 4 (MMRM, p=0.030) but did not achieve a significantly greater CAPS-5 change from baseline at Week 12 (MMRM, p=0.259, NS) compared with placebo (N=92)
- ➤ TNX-102 SL 5.6 mg dose (N=49) had a strong trend (MMRM, p=0.053) for greater CAPS-5 change from baseline at Week 12 compared with placebo (N=92); Effect size of 0.36 (Cohen's d)
  - ▶ Pre-planned sensitivity analyses that accounted for missing data, as well as ANCOVA, showed statistically significant results for TNX-102 SL 5.6 mg v. placebo:

➤ MMRM with multiple imputation p=0.031
 ➤ MMRM with hybrid LOCF/BOCF imputation p=0.037
 ➤ ANCOVA p=0.038

ANCOVA, analysis of covariance; BOCF, baseline observation carried forward; CAPS-5, Clinician-Administered PTSD Scale for DSM-5; LOCF, last observation carried forward; MMRM, mixed-effect model repeated measures; N, number; NS, not significant



# AtEase Study Results: Primary Endpoint CAPS-5 Total Score by MMRM with MI

#### **CAPS-5 LS Total Score Mean Change from Baseline**



<sup>\*</sup>p=0.031, comparing placebo and TNX-102 SL 5.6 mg, \*p<0.05, comparing placebo and TNX-102 SL 2.8 mg, by MMRM with MI, mixed-effect model repeated measures with multiple imputation; CAPS-5, Clinician Administered PTSD Scale for DSM-5; LS Mean, least squares mean



- > Trial Completion Rates: 73% Placebo; 79% TNX-102 SL 2.8 mg; 84% TNX-102 SL 5.6 mg
- > Systemic adverse events (AEs) and local administration site reactions occurring at ≥5% rate in either TNX-102 SL group:

|                                     | Placebo | TNX-102 SL 2.8 mg | TNX-102 SL 5.6 mg |
|-------------------------------------|---------|-------------------|-------------------|
| Systemic Adverse Events             | (N=94)* | (N=93)*           | (N=50)*           |
| Somnolence                          | 6.4%    | 11.8%             | 16.0%             |
| Dry Mouth                           | 10.6%   | 4.3%              | 16.0%             |
| Headache                            | 4.3%    | 5.4%              | 12.0%             |
| Insomnia                            | 8.5%    | 7.5%              | 6.0%              |
| Sedation                            | 1.1%    | 2.2%              | 12.0%             |
| Local Administration Site Reactions |         |                   |                   |
| Hypoaesthesia oral <sup>#</sup>     | 2.1%    | 38.7%             | 36.0%             |
| Paraesthesia                        | 3.2%    | 16.1%             | 4.0%              |
| Glossodynia                         | 1.1%    | 3.2%              | 6.0%              |

<sup>#</sup>Oral hypoaesthesia (tongue numbness) was most common AE, generally transient (<60 minutes), non-dose related and rated mild in 89% and moderate in 11% on TNX-102 SL; \*Safety Population (N=237) © 2017 Tonix Pharmaceuticals Holding Corp.



## Sleep as a Mediator of PTSD Treatment Response

- ➤ Mechanism of action of TNX-102 SL is hypothesized to be through improvement in sleep quality
- ➤ Sleep responded early in treatment with TNX-102 SL, by Week 2 on CAPS-5 sleep disturbance (SD) item
- ➤ PROMIS SD instrument administered on Weeks 4, 8 and 12
- ➤ In a post hoc analysis, examined the relationship between early response on sleep by PROMIS SD at Week 4 and change in severity of PTSD by the Week 12 endpoint in the three treatment groups (next slide)
  - ➤ For change in severity, used CAPS-5 total change from baseline without the sleep item (E6) to avoid co-linearity effects between the two variables

#### Change from baseline in the CAPS-5 Sleep Disturbance item







## Sleep as Mediator of PTSD Treatment Response Week 4 Sleep Change by PROMIS SD v. Week 12 CAPS-5 Response\*



\*CAPS-5 without sleep item (E6) CFB, change from baseline



### Summary of Hypothesized Mechanism of Action in PTSD

Recovery in PTSD Resulting from Treatment with TNX-102 SL is Mediated by Improvement in Sleep Quality

- ➤ Recovery is a learning process, e.g. depends on extinction learning
- > Extinction learning occurs in the daytime
- Consolidation (STM->LTM) of extinction occurs during sleep; roles for both REM and SWS
- Restoring quality of critical sleep stages may be permissive to consolidation of extinction memory and thereby allow normal recovery



(over weeks)



## Assessing CAPS-5 Entry Threshold in AtEase

- ➤ Score of ≥29 on CAPS-5 (20 items) required at screening & baseline
  - > > 50 on prior versions of CAPS (17 items) typical in previous drug registration trials
  - Extrapolation from prior versions of CAPS: ((50/17 items)/2) x 20 items = 29.4
- ➤ Post-hoc analysis to impute CAPS for DSM-IV (iCAPS-IV) scores for each subject
  - ➤ Baseline iCAPS-IV score calculated by summing 17 items in common with CAPS-5 and multiplying by two (for 0-8 intensity + frequency rather than 0-4)
  - > 4.3% of the sample had baseline iCAPS-IV of ≤ 50
  - ➤ Choosing CAPS-5 ≥33 results in all iCAPS-IV > 50
  - > 80% of mITT had baseline CAPS-5 of ≥ 33
- ▶ Primary analysis of AtEase was run for subgroup with baseline CAPS-5 ≥ 33



## AtEase Retrospective Analysis: Effect Sizes for Total CAPS-5 and Cluster Scores

- Effect sizes calculated for total CAPS-5 and clusters for patients with entry CAPS-5 ≥33
  - ➤ Larger effect size, in moderate range of 0.5, for total CAPS-5 and intrusion and hyperarousal clusters

#### Effect Sizes in Subgroup with ≥ 33 CAPS-5 Entry Score



<sup>\*</sup> MMRM, mixed-effects model repeated measures, p<0.05

CAPS-5 Change in Subgroup with ≥ 33 CAPS-5 Entry Score



Based on findings of post-hoc imputed CAPS, a baseline CAPS-5 score ≥33 was set as PTSD severity inclusion criterion in Phase 3 trial



# AtEase Study Retrospective Analysis: Remission from PTSD (CAPS-5 Baseline ≥33 Subgroup)

- Optimal outcome of treatment is achievement of remission, a virtually asymptomatic state
- ➤ Definition of remission used in AtEase was "Loss of Diagnosis and Endpoint CAPS-5 Score < 11"
- ➤ By Week 8, significantly more remitters in both 2.8 mg and 5.6 mg groups
- ➤ By week 12:
  - ➤ 5.6 mg group trended for higher rate than placebo (rates increased in both groups)



Asterisks and hashmark represent pairwise comparisons, TNX-102 SL group v. placebo, logistic regression p<0.05; # p=0.060



# AtEase Study Retrospective Analysis: Sustained Remission in CAPS-5 Baseline ≥33 Subgroup

- Remission is more clinically meaningful if it is sustained
- ➤ In order to look at sustained remission in AtEase:
  - Determined rates of participants who met remission status at both Week 8 and Week 12
- ≥ 21% of the TNX-102 SL 5.6 mg participants met for sustained remission v. 5% of placebo (p=0.02)
- ➤ In Phase 3, open label extension study of TNX-102 SL 5.6 mg will allow a look at sustained remission beyond Week 12



Remission = Loss of Diagnosis and CAPS-5 < 11Asterisk and hashmark represent pairwise comparisons between TNX-102 SL and Placebo; #p=0.08, Odds Ratio 3.01 (0.89, 10.18) \*p=0.02, Odds Ratio 4.60 (1.27, 16.66); logistic regression



### Phase 3 HONOR Study in PTSD Enrolling

- To confirm Phase 2 AtEase findings in military-related PTSD:
  - Larger adaptive design study
  - Enrollment started in 10 2017

TNX-102 SL once-daily at bedtime 5.6 mg  $N \sim 275 (140*)$ 

Placebo once-daily at bedtime

N ~ 275 (140\*)

- General study characteristics:
- Randomized, double-blind, placebo-controlled, entrance CAPS-5
  ≥ 33
- ➤ One unblinded interim analysis (IA) by an independent data monitoring committee at 50% randomized
- ➤ IA (N ~275) for efficacy stop, continuation as planned or sample size adjustment
- ➤ Potential to enroll 550 patients
- ➤ Approximately 35 U.S. clinical sites
- Primary efficacy endpoint:
- ➤ Mean change from baseline in total CAPS-5 at Week 12 compared between TNX-102 SL 5.6 mg and placebo

12 weeks open-label extension

\* Interim analysis

1H 2018 - IA outcome anticipated 2H 2018 - topline data anticipated, if 550 patients are studied



- ▶ Phase 2 clinical investigation established that TNX-102 SL 5.6 mg is the potential efficacious and safe dose to treat PTSD in a military-related PTSD population (TNX-102 SL 5.6 mg, N=49 v. placebo, N=92)
  - ➤ Established CAPS-5 ≥33 as entry threshold for Phase 3 studies to confirm AtEase findings
- ➤ Relationship between early sleep improvement and Week 12 PTSD recovery supports mechanistic hypothesis that improved sleep quality is a mediator of TNX-102 SL treatment response
- TNX-102 SL 5.6 mg treatment resulted in sustained remission between Weeks 8 and 12 in 21% of participants that was statistically significant relative to placebo and approximately 4X the rate in placebo in the CAPS-5 ≥33 subgroup (TNX-102 SL, N=38 v. placebo, N=77)
- ▶ Phase 3 clinical investigation of TNX-102 SL 5.6 mg in military-related PTSD is ongoing





## Thank you!