(R)-Isometheptene* (IMH) Binds to the Imidazoline-1 Receptor and (S)-IMH increases Blood Pressure: Potentially Superior Benefit-to-Risk Ratio for (R)-IMH as an Analgesic for Headache

Bruce Daugherty, Leland Gershell, Seth Lederman

Tonix Pharmaceuticals, New York, NY.

Introduction

- Isometheptene (IMH) is a racemic drug that has been used clinically in the US for more than 70 years primarily as a treatment for headache. Yet its mechanism of action remains unknown.
- Racemic IMH has sympathomimetic effects that have been linked to cardiovascular effects reported in the product labeling.
- To elucidate the mechanism of action of IMH, we separated IMH into the individual isomers, (R)-IMH and (S)-IMH and studied their molecular and cardiovascular effects.

Racemic isometheptene (IMH) has a long track record of use

Previously marketed isometheptene drugs were a mixture containing equal amounts of two chemically distinct, mirror-image isomers

Growth regulation

Model of I₁-imidazoline receptor signalling pathways

(PKC β_{II} and PKC ζ) and mitogen-activated protein kinase (MAPK); extracellular-regulated kinase (ERK); and c-jun kinase (JNK).

Methods

- Racemic IMH was screened on a broad panel of protein targets, which included enzymes, receptors (both GPCR and non-GPCR), ion channels and transporters.
- The effects on arterial blood pressure (BP) and heart rate (HR) of intravenous (IV) racemic IMH mucate, (R)-IMH mucate, and (S)-IMH mucate in anesthetized male Wistar rats were studied (using consecutive doses of 0.03, 0.1, 0.3, 1, 3, and 10 mg/kg IV with 10-minute interdose intervals).
- The pharmacokinetics (PK) of racemic and (R)-IMH were studied in rats using stereospecific liquid chromatography-mass spectrometry.

Results

Comparative Binding Affinities of (R)-Isometheptene versus (S)-Isometheptene to Receptors Expressed in the CNS

	K _i (nM)										
Compound	I ₁ R	I ₂ R	a _{2B}	Sigma-1 Receptor	Sigma-2 Receptor						
(R)-Isometheptene	18	62	50000	1900	5600						
(S)-Isometheptene	1100	180	55000	2100	5200						

Equilibrium Binding of (R)-Isometheptene, (S)-Isometheptene and Racemic **Isometheptene to I₁-Imidazoline Receptor**

(R)-Isometheptene Has Reduced Effects on Blood Pressure Compared to (S)-Isometheptene and Racemic Isometheptene

(R)-Isometheptene Has Similar Effects on Heart Rate Compared to (S)-Isometheptene and Racemic Isometheptene

Each test substance versus vehicle: no indication = not significant; * = P < .05; ** = P < .01; *** = P < .001

Pharmacokinetics of Racemic Isometheptene Mucate and (R)-Isometheptene Mucate in Rats

Test Article	Dose, mg/kg	C _{max} , ng/mL		AUC, ng.h/mL		T _{max} , h		T _{1/2} , h	
		R-IMH	S-IMH	R-IMH	S-IMH	R-IMH	S-IMH	R-IMH	S-IMH
Racemic IMH	1	165	175	62	66	0.16	0.16	0.37	0.38
(R)-IMH	0.5	198	NC	76	NC	0.16	NC	0.47	NC

Conclusions

- Analgesic
- Binds to I₁-imidazoline receptor

- Our finding that R-IMH binds to I_1R with high affinity suggests that this receptor is the primary site of action for R-IMH's analgesic effects. This is confirmed by recent results in the I_1R knock out mouse in which there is a decreased pain threshold.
- Our finding that S-IMH produces significantly higher increased BP suggest that this isomer is responsible for the cardiovascular liability observed with racemic IMH.
- These findings suggest that R-IMH is an agonist of I_1R , a receptor in the brain that regulates pain perception, and that it may have a superior benefit/risk ratio as an analgesic for headache compared to either the racemic or the (S)-isomer.

References

- 1. MigraTen Prescribing Information; Pharmelle; Gilbert AZ, 2004.
- 2. Diamond S, Medina JL. Isometheptene—a non-ergot drug in the treatment of migraine. *Headache*. 1975;15(3):211-213.
- 3. Zhang L, Zhao TY, Hou N, et al. Generation and primary phenotypes of imidazoline receptor antisera-selected (IRAS) knockout mice. Cns Neurosci Ther. 2013;19(12):978-981.
- 4. Daugherty, BL, Gershell, L and Lederman S. (R)-isometheptene (IMH) binds to the imidazoline-1 receptor and (S)-isometheptene increases blood pressure: Potentially superior benefit to risk ratio for (R)-IMH as an analgesic for headache. Headache. 2015: June Abstract PS29.55(53) 172.

*(R)-IMH mucate is being investigated in the US for tension-type headache as TNX-201 under US Investigational New Drug and it is not approved for any indication.